correct_all.Rd
correct_all performs corrections for tree life status, overgrown recruits cases, size measurement errors and POM changes, by calling correct_alive, correct_size and correct_recruits in this order.
correct_all( data, id_col = getOption("id_col"), time_col = getOption("time_col"), status_col = getOption("status_col"), plot_col = getOption("plot_col"), byplot = TRUE, dead_confirmation_censuses = 2, use_size = FALSE, invariant_columns = c("Genus", "Species", "binomial_name", "Forest", "Family"), size_col = getOption("size_col"), species_col = "binomial_name", POM_col = getOption("POM_col"), measure_type = getOption("measure_type"), positive_growth_threshold = 5, negative_growth_threshold = -2, default_POM = 1.3, pioneers = c("Cecropia", "Pourouma"), pioneers_treshold = 7.5, dbh_min = 10 )
data | data.frame, containing forest inventories in the form of a long-format time series - one line corresponds to a measurement for one individual at a given census time. |
---|---|
id_col | character, name of the column containing trees unique IDs. |
time_col | character, name of the column containing census years. |
status_col | character, name of the column corresponding to tree status: 0/FALSE for dead, 1/TRUE for alive. |
plot_col | character, name of the column containing plot indices or names. |
byplot | logical, indicating whether the function has to process the data by plot (TRUE)or for the whole dataset (FALSE). |
dead_confirmation_censuses | integer, defaults to 2: number of consecutive censuses for which a tree is unseen that are needed to consider the tree as dead. NB: for the trees unseen during the dead_confirmation_censuses -1 last inventories, the status cannot be corrected, thus mortality rates should not be calculated for these censuses. |
use_size | character, defaults to FALSE. Optional argument specifying whether to use measurement column (circumference or diameter) to create a vital status field in case it does not already exist. See Details. |
invariant_columns | character vector, containing the name of the columns for which value remain constant for a given tree (for example species name or coordinates). When a row is added by the function correct_alive, values for invariant columns are taken from the value for other censuses. Defaults to null |
size_col | character, name of the column corresponding to tree size (circumference or diameter) measurements . |
species_col | character, name of th column containing full species names (or other taxonomic identification) |
POM_col | character, name of the column corresponding the Point Of Measurement (POM). |
measure_type | character, partially matching “Circumference” or “Diameter”, indicating what is the type of the measurements. |
positive_growth_threshold | positive numeric or integer, threshold over which an annual DIAMETER growth is considered abnormal (in cm). Defaults to 5 cm. |
negative_growth_threshold | negative numeric or integer, threshold under which an absolute DIAMETER difference is considered abnormal. To be given in centimeters. Defaults to -2 cm. Note that this threshold is applied between two consecutive censuses, regardless of the time between them, as it assumes that a tree diameter cannot decrease more than this value, even over a long period. |
default_POM | scalar numeric, default POM used in the dataset, in the same unit as the POM. When the value in POM_col is different from default_POM, the corrected size is given at default_POM . It defaults to 1.3 meters-according to current practice of measurement of diameter at breast height (DBH). |
pioneers | character vector containing full species name (or other taxonomic identification)for which a specific positive growth threshold (used for instance for fast growing species for which the threshold to detect an abnormal growth is high). |
pioneers_treshold | Positive DIAMETER growth limit to apply to pioneer species (specified in 'pioneers'), similar to . Expressed in centimeters. Defaults to 7.5 cm |
dbh_min | scalar integer or numeric, indicating the minimum DIAMETER (in centimeters) at the default measurement height from which trees are recorded. Defaults to 10 cm. |
A data.frame with additional columns: status_corr and size_corr for corrected tree vital status and size, code_corr for correction tag and types.
data(example_census) # Short version: parameters specified using prepare_forestdata and default values prepare_forestdata(example_census, plot_col="Plot", id_col="idTree", time_col="CensusYear", status_col = "CodeAlive", size_col="Circ", measure_type = "C", POM_col = "POM")#> [1] "plot_col let to its default or previous value" #> [1] "id_col let to its default or previous value" #> [1] "time_col let to its default or previous value" #> [1] "status_col let to its default or previous value" #> [1] "size_col let to its default or previous value" #> [1] "measure_type let to its default or previous value" #> [1] "POM_col let to its default or previous value"all_cors <- suppressWarnings(correct_all(example_census, invariant_columns = c("Genus", "Species", "binomial_name", "Forest", "Family"), species_col = "binomial_name",#tag pioneer measure_type = getOption("measure_type"), pioneers = c("Cecropia","Pourouma"),#tag pioneer pioneers_treshold = 7.5))#> | | | 0% | |=================================== | 50% | |======================================================================| 100% #> | | | 0% | | | 1% | |= | 1% | |= | 2% | |== | 2% | |== | 3% | |== | 4% | |=== | 4% | |=== | 5% | |==== | 5% | |==== | 6% | |===== | 6% | |===== | 7% | |===== | 8% | |====== | 8% | |====== | 9% | |======= | 9% | |======= | 10% | |======= | 11% | |======== | 11% | |======== | 12% | |========= | 12% | |========= | 13% | |========= | 14% | |========== | 14% | |========== | 15% | |=========== | 15% | |=========== | 16% | |============ | 16% | |============ | 17% | |============ | 18% | |============= | 18% | |============= | 19% | |============== | 19% | |============== | 20% | |============== | 21% | |=============== | 21% | |=============== | 22% | |================ | 22% | |================ | 23% | |================ | 24% | |================= | 24% | |================= | 25% | |================== | 25% | |================== | 26% | |=================== | 26% | |=================== | 27% | |=================== | 28% | |==================== | 28% | |==================== | 29% | |===================== | 29% | |===================== | 30% | |===================== | 31% | |====================== | 31% | |====================== | 32% | |======================= | 32% | |======================= | 33% | |======================= | 34% | |======================== | 34% | |======================== | 35% | |========================= | 35% | |========================= | 36% | |========================== | 36% | |========================== | 37% | |========================== | 38% | |=========================== | 38% | |=========================== | 39% | |============================ | 39% | |============================ | 40% | |============================ | 41% | |============================= | 41% | |============================= | 42% | |============================== | 42% | |============================== | 43% | |============================== | 44% | |=============================== | 44% | |=============================== | 45% | |================================ | 45% | |================================ | 46% | |================================= | 46% | |================================= | 47% | |================================= | 48% | |================================== | 48% | |================================== | 49% | |=================================== | 49% | |=================================== | 50% | |=================================== | 51% | |==================================== | 51% | |==================================== | 52% | |===================================== | 52% | |===================================== | 53% | |===================================== | 54% | |====================================== | 54% | |====================================== | 55% | |======================================= | 55% | |======================================= | 56% | |======================================== | 56% | |======================================== | 57% | |======================================== | 58% | |========================================= | 58% | |========================================= | 59% | |========================================== | 59% | |========================================== | 60% | |========================================== | 61% | |=========================================== | 61% | |=========================================== | 62% | |============================================ | 62% | |============================================ | 63% | |============================================ | 64% | |============================================= | 64% | |============================================= | 65% | |============================================== | 65% | |============================================== | 66% | |=============================================== | 66% | |=============================================== | 67% | |=============================================== | 68% | |================================================ | 68% | |================================================ | 69% | |================================================= | 69% | |================================================= | 70% | |================================================= | 71% | |================================================== | 71% | |================================================== | 72% | |=================================================== | 72% | |=================================================== | 73% | |=================================================== | 74% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 75% | |===================================================== | 76% | |====================================================== | 76% | |====================================================== | 77% | |====================================================== | 78% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 79% | |======================================================== | 80% | |======================================================== | 81% | |========================================================= | 81% | |========================================================= | 82% | |========================================================== | 82% | |========================================================== | 83% | |========================================================== | 84% | |=========================================================== | 84% | |=========================================================== | 85% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 86% | |============================================================= | 87% | |============================================================= | 88% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 89% | |=============================================================== | 90% | |=============================================================== | 91% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 92% | |================================================================= | 93% | |================================================================= | 94% | |================================================================== | 94% | |================================================================== | 95% | |=================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 96% | |==================================================================== | 97% | |==================================================================== | 98% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 99% | |======================================================================| 100% #> | | | 0% | |=================================== | 50% | |======================================================================| 100%# Full call: all_cors <- suppressWarnings(correct_all(example_census, id_col = "idTree", time_col = "CensusYear", status_col = "CodeAlive", plot_col = "Plot", byplot = TRUE, dead_confirmation_censuses = 2, use_size = FALSE, invariant_columns = c("Genus", "Species", "binomial_name", "Forest", "Family"), size_col = "Circ", species_col = "binomial_name",#tag pioneer POM_col = "POM", measure_type = "C", positive_growth_threshold = 5, negative_growth_threshold = -2, default_POM = 1.3, pioneers = c("Cecropia","Pourouma"),#tag pioneer pioneers_treshold = 7.5, dbh_min = 10))#> | | | 0% | |=================================== | 50% | |======================================================================| 100% #> | | | 0% | | | 1% | |= | 1% | |= | 2% | |== | 2% | |== | 3% | |== | 4% | |=== | 4% | |=== | 5% | |==== | 5% | |==== | 6% | |===== | 6% | |===== | 7% | |===== | 8% | |====== | 8% | |====== | 9% | |======= | 9% | |======= | 10% | |======= | 11% | |======== | 11% | |======== | 12% | |========= | 12% | |========= | 13% | |========= | 14% | |========== | 14% | |========== | 15% | |=========== | 15% | |=========== | 16% | |============ | 16% | |============ | 17% | |============ | 18% | |============= | 18% | |============= | 19% | |============== | 19% | |============== | 20% | |============== | 21% | |=============== | 21% | |=============== | 22% | |================ | 22% | |================ | 23% | |================ | 24% | |================= | 24% | |================= | 25% | |================== | 25% | |================== | 26% | |=================== | 26% | |=================== | 27% | |=================== | 28% | |==================== | 28% | |==================== | 29% | |===================== | 29% | |===================== | 30% | |===================== | 31% | |====================== | 31% | |====================== | 32% | |======================= | 32% | |======================= | 33% | |======================= | 34% | |======================== | 34% | |======================== | 35% | |========================= | 35% | |========================= | 36% | |========================== | 36% | |========================== | 37% | |========================== | 38% | |=========================== | 38% | |=========================== | 39% | |============================ | 39% | |============================ | 40% | |============================ | 41% | |============================= | 41% | |============================= | 42% | |============================== | 42% | |============================== | 43% | |============================== | 44% | |=============================== | 44% | |=============================== | 45% | |================================ | 45% | |================================ | 46% | |================================= | 46% | |================================= | 47% | |================================= | 48% | |================================== | 48% | |================================== | 49% | |=================================== | 49% | |=================================== | 50% | |=================================== | 51% | |==================================== | 51% | |==================================== | 52% | |===================================== | 52% | |===================================== | 53% | |===================================== | 54% | |====================================== | 54% | |====================================== | 55% | |======================================= | 55% | |======================================= | 56% | |======================================== | 56% | |======================================== | 57% | |======================================== | 58% | |========================================= | 58% | |========================================= | 59% | |========================================== | 59% | |========================================== | 60% | |========================================== | 61% | |=========================================== | 61% | |=========================================== | 62% | |============================================ | 62% | |============================================ | 63% | |============================================ | 64% | |============================================= | 64% | |============================================= | 65% | |============================================== | 65% | |============================================== | 66% | |=============================================== | 66% | |=============================================== | 67% | |=============================================== | 68% | |================================================ | 68% | |================================================ | 69% | |================================================= | 69% | |================================================= | 70% | |================================================= | 71% | |================================================== | 71% | |================================================== | 72% | |=================================================== | 72% | |=================================================== | 73% | |=================================================== | 74% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 75% | |===================================================== | 76% | |====================================================== | 76% | |====================================================== | 77% | |====================================================== | 78% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 79% | |======================================================== | 80% | |======================================================== | 81% | |========================================================= | 81% | |========================================================= | 82% | |========================================================== | 82% | |========================================================== | 83% | |========================================================== | 84% | |=========================================================== | 84% | |=========================================================== | 85% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 86% | |============================================================= | 87% | |============================================================= | 88% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 89% | |=============================================================== | 90% | |=============================================================== | 91% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 92% | |================================================================= | 93% | |================================================================= | 94% | |================================================================== | 94% | |================================================================== | 95% | |=================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 96% | |==================================================================== | 97% | |==================================================================== | 98% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 99% | |======================================================================| 100% #> | | | 0% | |=================================== | 50% | |======================================================================| 100%#> 'data.frame': 25684 obs. of 16 variables: #> $ Forest : chr "Paracou:P6" "Paracou:P6" "Paracou:P6" "Paracou:P6" ... #> $ Plot : chr "1" "1" "1" "1" ... #> $ idTree : int 100621 100621 100621 100621 100621 100621 100621 100621 100621 100621 ... #> $ Family : chr "Euphorbiaceae" "Euphorbiaceae" "Euphorbiaceae" "Euphorbiaceae" ... #> $ Genus : chr "Sandwithia" "Sandwithia" "Sandwithia" "Sandwithia" ... #> $ Species : chr "guyanensis" "guyanensis" "guyanensis" "guyanensis" ... #> $ CensusYear : int 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 ... #> $ CodeAlive : logi TRUE TRUE TRUE TRUE TRUE TRUE ... #> $ CodeMeas : int 0 0 0 0 0 0 0 0 0 0 ... #> $ Circ : num 40 40 40 40.5 40.5 41.5 40.5 40.5 40.5 41 ... #> $ binomial_name : chr "Sandwithia_guyanensis" "Sandwithia_guyanensis" "Sandwithia_guyanensis" "Sandwithia_guyanensis" ... #> $ POM : num 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 ... #> $ status_corr : num 1 1 1 1 1 1 1 1 1 1 ... #> $ code_corr : chr "0" "0" "0" "0" ... #> $ size_corr : num 40 40 40 40.5 40.5 41.5 40.5 40.5 40.5 41 ... #> $ corrected_recruit: logi FALSE FALSE FALSE FALSE FALSE FALSE ...