prepare_forestdata.Rd
This function counterbalances the high number of arguments in ForestData:
many of these simply correspond to the input dataset column names, and have
to be specified over and over when running each function.
prepare_forestdata
allows the user to specify these column names only
once and then run all the functions without having to do it again
prepare_forestdata( data, plot_col = getOption("plot_col"), id_col = getOption("id_col"), time_col = getOption("time_col"), status_col = getOption("status_col"), size_col = getOption("size_col"), measure_type = getOption("measure_type"), POM_col = getOption("POM_col") )
data | data.frame, the forest census dataset that you want to treat with the ForestData r-package |
---|---|
plot_col | character, the name of the column containing plot indices |
id_col | character, the name of the column containing tree unique ids |
time_col | character, the name of the column containing census years or times |
status_col | character, the name of the column containing tree vital statuses |
size_col | character, the name of the column containing tree size measurements |
measure_type | character indicating whether measures are circumferences ("C") or diameter ("D") |
POM_col | character, the name of the column containing Point of Measurement (POM) values |
NULL, because this function just sets global options to fluidify ForestData's usage.
# Loading example dataset data(example_census) # specifying the example dataset's column names prepare_forestdata(example_census, plot_col="Plot", id_col="idTree", time_col="CensusYear", status_col = "CodeAlive", size_col="Circ", measure_type = "C", POM_col = "POM")#> [1] "plot_col let to its default or previous value" #> [1] "id_col let to its default or previous value" #> [1] "time_col let to its default or previous value" #> [1] "status_col let to its default or previous value" #> [1] "size_col let to its default or previous value" #> [1] "measure_type let to its default or previous value" #> [1] "POM_col let to its default or previous value"#> [1] "Plot"#> [1] "CensusYear"# If the function is run twice with similar specification for one #or several options, a message indicates that these specific option.s #kept unchanged prepare_forestdata(example_census, plot_col="Plot", id_col="idTree", time_col="CensusYear", status_col = "CodeAlive", size_col="Circ", measure_type = "C", POM_col = "POM")#> [1] "plot_col let to its default or previous value" #> [1] "id_col let to its default or previous value" #> [1] "time_col let to its default or previous value" #> [1] "status_col let to its default or previous value" #> [1] "size_col let to its default or previous value" #> [1] "measure_type let to its default or previous value" #> [1] "POM_col let to its default or previous value"# If one column name is erroneous, then the function stops with explicit error message if (FALSE) { prepare_forestdata(example_census, plot_col="SAUCISSON", id_col="idTree", time_col="CensusYear", status_col = "CodeAlive", size_col="Circ", measure_type = "C", POM_col = "POM") ## "Error in prepare_forestdata(example_census, ## plot_col = "SAUCISSON", id_col = "idTree", : ## plot_col is not any of your dataset's column name..." }