compute_rates.Rd
Title
compute_rates( data, status_col = "status_corr", time_col = ifelse(is.null(getOption("time_col")), "CensusYear", getOption("time_col")), id_col = ifelse(is.null(getOption("id_col")), "idTree", getOption("id_col")), dead_confirmation_censuses = 2, byplot = TRUE, plot_col = ifelse(is.null(getOption("plot_col")), "Plot", getOption("plot_col")), corrected = TRUE )
data | data.frame, containing forest inventories in the form of a long-format time series - one line corresponds to a measurement for one individual at a given census time. |
---|---|
status_col | character, name of the column corresponding to tree status: 0/FALSE for dead, 1/TRUE for alive. |
time_col | character, name of the column containing census years. |
id_col | character, name of the column containing trees unique IDs. |
dead_confirmation_censuses | integer, defaults to 2: number of consecutive censuses for which a tree is unseen that are needed to consider the tree as dead. NB: for the trees unseen during the dead_confirmation_censuses -1 last inventories, the status cannot be corrected, thus mortality rates should not be calculated for these censuses. |
byplot | logical, indicating whether the function has to process the data by plot (TRUE)or for the whole dataset (FALSE). |
plot_col | character, name of the column containing plot indices or names. |
corrected | Logical, indicates whether the dataset has been corrected (for tree status errors) beforehand. If TRUE, triggers correct_alive, defaults to TRUE. |
a data.frame that contains recruitment and mortality rates, in the same format as the outputs of compute_mortality and compute_recruitment
#> interval time plot annual_recruitment_rate annual_deathrate #> 1 1984_1985 1985 1 0.024120603 0.007157464 #> 2 1985_1986 1986 1 0.004040404 0.009045226 #> 3 1985_1987 1987 3 0.120950606 0.011976480 #> 4 1986_1987 1987 1 0.010121457 0.012121212 #> 5 1987_1988 1988 1 0.006085193 0.008097166 #> 6 1987_1989 1989 3 0.125722360 0.012089801 #> 7 1988_1989 1989 1 0.007128310 0.011156187 #> 8 1989_1990 1990 1 0.006147541 0.012219959 #> 9 1989_1991 1991 3 0.155352221 0.010061151 #> 10 1990_1991 1991 1 0.016210740 0.005122951 #> 11 1991_1992 1992 1 0.004065041 0.007092199 #> 12 1991_1993 1993 3 0.154704243 0.007901098 #> 13 1992_1993 1993 1 0.008113590 0.006097561 #> 14 1993_1994 1994 1 0.002038736 0.007099391 #> 15 1993_1995 1995 3 0.079471941 0.008884420 #> 16 1994_1995 1995 1 0.011190234 0.009174312 #> 17 1995_1997 1997 1 0.119340337 0.007146595 #> 18 1995_1997 1997 3 0.104370715 0.022355139 #> 19 1997_1999 1999 1 0.179424522 0.010739253 #> 20 1997_1999 1999 3 0.239982547 0.009852457 #> 21 1999_2001 2001 1 0.064051262 0.011637128 #> 22 1999_2001 2001 3 0.144714921 0.010526609