This function computes mortality in forest inventories according to plot if there are several

compute_mortality(
  data,
  status_col = "status_corr",
  time_col = ifelse(is.null(getOption("time_col")), "CensusYear",
    getOption("time_col")),
  id_col = ifelse(is.null(getOption("id_col")), "idTree", getOption("id_col")),
  dead_confirmation_censuses = 2,
  byplot = TRUE,
  plot_col = ifelse(is.null(getOption("plot_col")), "Plot", getOption("plot_col")),
  corrected = TRUE
)

Arguments

data

A data.frame containing a time-series tree-wise forest inventory -i.e. every line is a single tree measurement for a single year.

status_col

Character. The name of the column containing tree vital status - 0=dead; 1=alive.

time_col

Character. The name of the column containing census year

id_col

Character. The name of the column containing trees unique ids

dead_confirmation_censuses

Integer, defaults to 2. This is the number of censuses needed to state that a tree is considered dead, if unseen. In Paracou, we use the rule-of-thumb that if a tree is unseen twice, its probability to be actually dead is close to 1. The choice of this value involves that trees unseen during the X-1 last inventories can not be corrected for death, and thus mortality rates should not be calculated for these censuses.

byplot

Logical. If there are several plots in your dataset, the correction is performed by plot, in case these would not be censuses the same years or with the same frequencies one another.

plot_col

Character. The name of the column containing the plots indices.

corrected

Logical. Indicates whether the dataset has been corrected for errors in tree life status; if not it will be corrected beforehand using correct_alive function

Value

A data.frame with absolute and annual mortality rates by plot and census interval.

Examples

data("example_status_corr") suppressWarnings(compute_mortality(example_status_corr, status_col="status_corr", time_col="CensusYear", id_col="idTree", dead_confirmation_censuses=2, byplot = TRUE, plot_col = "Plot", corrected = TRUE))
#> interval time annual_deathrate plot #> 1 1984_1985 1985 0.007157464 1 #> 2 1985_1986 1986 0.009045226 1 #> 3 1986_1987 1987 0.012121212 1 #> 4 1987_1988 1988 0.008097166 1 #> 5 1988_1989 1989 0.011156187 1 #> 6 1989_1990 1990 0.012219959 1 #> 7 1990_1991 1991 0.005122951 1 #> 8 1991_1992 1992 0.007092199 1 #> 9 1992_1993 1993 0.006097561 1 #> 10 1993_1994 1994 0.007099391 1 #> 11 1994_1995 1995 0.009174312 1 #> 12 1995_1997 1997 0.007146595 1 #> 13 1997_1999 1999 0.010739253 1 #> 14 1999_2001 2001 0.011637128 1 #> 15 1985_1987 1987 0.011976480 3 #> 16 1987_1989 1989 0.012089801 3 #> 17 1989_1991 1991 0.010061151 3 #> 18 1991_1993 1993 0.007901098 3 #> 19 1993_1995 1995 0.008884420 3 #> 20 1995_1997 1997 0.022355139 3 #> 21 1997_1999 1999 0.009852457 3 #> 22 1999_2001 2001 0.010526609 3